21 research outputs found

    On structure, family and parameter estimation of hierarchical Archimedean copulas

    Full text link
    Research on structure determination and parameter estimation of hierarchical Archimedean copulas (HACs) has so far mostly focused on the case in which all appearing Archimedean copulas belong to the same Archimedean family. The present work addresses this issue and proposes a new approach for estimating HACs that involve different Archimedean families. It is based on employing goodness-of-fit test statistics directly into HAC estimation. The approach is summarized in a simple algorithm, its theoretical justification is given and its applicability is illustrated by several experiments, which include estimation of HACs involving up to five different Archimedean families.Comment: 63 pages, one attachment in attachment.pd

    Landscape Analysis for Surrogate Models in the Evolutionary Black-Box Context

    Full text link
    Surrogate modeling has become a valuable technique for black-box optimization tasks with expensive evaluation of the objective function. In this paper, we investigate the relationship between the predictive accuracy of surrogate models and features of the black-box function landscape. We also study properties of features for landscape analysis in the context of different transformations and ways of selecting the input data. We perform the landscape analysis of a large set of data generated using runs of a surrogate-assisted version of the Covariance Matrix Adaptation Evolution Strategy on the noiseless part of the Comparing Continuous Optimisers benchmark function testbed.Comment: 25 pages main article, 28 pages supplementary material, 3 figures, currently under review at Evolutionary Computation journa

    Using Artificial Neural Networks to Determine Ontologies Most Relevant to Scientific Texts

    Full text link
    This paper provides an insight into the possibility of how to find ontologies most relevant to scientific texts using artificial neural networks. The basic idea of the presented approach is to select a representative paragraph from a source text file, embed it to a vector space by a pre-trained fine-tuned transformer, and classify the embedded vector according to its relevance to a target ontology. We have considered different classifiers to categorize the output from the transformer, in particular random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and Gaussian process classifiers. Their suitability has been evaluated in a use case with ontologies and scientific texts concerning catalysis research. From results we can say the worst results have random forest. The best results in this task brought support vector machine classifier
    corecore